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Introduction
The subfamily Orthocladiinae (Diptera: Chironomidae) is one of 

the richest in genera and species, and in Andean rivers above 2000 
meters of altitude, the subfamily Orthocladiinae is very abundant, 
with multiple genera present in the high Andean region, and of 
which some have yet to be described [1]. Furthermore, species of 
the same genus share many larval characteristics, making it nearly 
impossible to distinguish them, even at a genus level. Nevertheless, 
pupal forms are specific for a genus, and even for a species, and 
there are several records in which larvae and pupae have been 
associated in rivers of the high Andean region between Colombia 
and Peru.

Among the most abundant genera of Orthocladiinae in the high 
Andean region, there are larvae described as Genus 1 by Roback 
& Coffman [2], a genus found exclusively in the Andean region. 
Its larvae belong to the Cricotopus-Oliveiriella complex [1,3];  

 
complicating its identification even at the genus level, and at the 
species-level, the differences between species have not been studied 
yet. Its pupae, however, are very characteristic and very different 
from the genus Cricotopus; therefore, a species-level description can 
be achieved. Larvae belonging to this taxon are abundantly found in 
the Chinchiná River (Colombia), and based on studies related to the 
association between macroinvertebrates and contamination, the 
possibility of using these larvae as contamination indicators has led 
to a complete morphological and genetic study in order to establish 
its possible use as bioindicators [4,5].

The use of aquatic macroinvertebrates currently constitutes 
a tool for the biological and integral characterization of water 
quality [4,6]. All aquatic organisms can be considered as 
bioindicators, however, the evolutionary adaptations to different 
environmental conditions and the tolerance limits to a given 
disturbance are responsible for the characteristics that classify 
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Abstract

The family Chironomidae belongs to the most abundant macroinvertebrates in samples for water quality assessment and displays a wide tolerance 
range to contaminants, which makes it an excellent bioindicator. The species Genus 1 sp. 2 (Chironomidae: Orthocladiinae), included among the larval 
keys of the Cricotopus-Oliveiriella complex, is difficult to determine based on its larval instar using the current morphological keys, which makes it 
necessary to use pupae for a species-level identification. In this study, 103 organisms in the IV larval instar were collected from tributaries of the high 
Chinchiná river basin (Caldas-Colombia), along with eight organisms at the pupal level (reared in the laboratory). The organisms were morphologically 
identified, and a molecular analysis of the genes COI and 16S rDNA was performed in order to confirm and associate larvae and pupae.

In the larval morphometric analysis, 13 structure measurements were taken, with the aim of finding possible variations among specimens from 
different sampling stations, and only dorsal head area (DHAr) showed significant differences. The presence of mentum deformities was assessed, a 
total of 18 specimens showed partial or total teeth deformity, although no significant differences were found between deformity frequency and the 
sampling stations. The results obtained allow for a molecular determination and association of larvae and pupae of the species Genus 1 sp. 2, and new 
morphological measurements in larvae that can aid in determining variations resulting from contaminant agents and contributing to establishing this 
species as a water quality bioindicator. 

 Keywords: Colombia; Deformities; Molecular analysis; Morphology; Morphometry

http://crimsonpublishers.com/eaes/index.php
http://crimsonpublishers.com/eaes/index.php
http://crimsonpublishers.com/index.php


Environ Anal Eco stud
       

Copyright © Fredy A Rivera Páez

2/10How to cite this article: Paula A O L, Narcís P, Gabriel J C V, Erika M O P, Fredy A R P, et all. Genus 1 sp. 2 (Diptera: Chironomidae): The Potential use of 
its Larvae as Bioindicators. Environ Anal Eco stud. 4(3). EAES.000589. 2018. DOI: 10.31031/EAES.2018.04.000589

Volume -4  Issue - 3

them as sensitive organisms, whether they do not endure changes 
in their environment or they are tolerant to stress conditions. 
Chironomidae (Diptera: Chironomidae), with nearly 20000 species 
distributed throughout all the continents, from the Antarctic region 
to the Tropics, inhabit lakes, streams and rivers during their larval 
and pupal developmental stages [1,2,4].

The family Chironomidae is considered to be tolerant to water 
contamination with organic matter, heavy metals, pesticides, 
aromatic polycyclic hydrocarbons, and organic solvents, displaying 
subletal responses such as morphological variations represented 
by morphometric changes and deformities as a result of exposure to 
these conditions [5-11]. Regarding these tolerance characteristics, 
Arambourou et al. [11], Warwick [12], Alba-Tercedor [13], Servia 
et al. [14,15], Giacometti & Bersosa [16], report Chironomidae 
as organisms with a potential use in water quality bioindication. 
Nevertheless, one of the current limitations for the use of 
Chironomidae is an insufficient knowledge of their taxonomy, 
which in many cases is not straightforward, due to phenotypic 
plasticity or shared characters between several species of a genus, 
or even between genera. 

The present study aimed to morphological evaluation the 
larvae of Genus 1 sp. 2 Roback & Coffman [2], through diagnostic 
characters, further, larvae and pupae of Genus 1 sp. 2 were 
molecularly determined and associated based on the study of 
mitochondrial genes. The possible morphometric variations and 
record the frequency of deformities was assessed in organisms of the 
IV larval instar in the sampling stations (no evident anthropogenic 
impact or lack of any evident mining impact and sampling stations 
with mining impact). Overall, the results allowing to contribute to 
the establishment of this species as a water quality bioindicator.

Materials and Methods
Study area

The study area included six sampling stations located in the 
Chinchiná River basin in the department of Caldas (Colombia). 
Two sampling stations were selected as reference (areas without 
an evident mining impact), one located in La Elvira stream 
(05°03’10.9’’ North, 75°24’33.6’’ West), municipality of Manizales, 
and the other in Romerales stream (04°59’22’’ North, 75°25’58’’ 
West), municipality of Villamaría. The other four sampling stations 
are impacted by waste disposal generated by gold mining [17,18]. 
Two of the stations were located in El Elvira stream, Manizales 
(05°03’4.4’’ North, 75°24’33.1’’ West; 5°1’53’’ North, 75°24’43.8’’ 
West), another was located in California stream, Villamaría 
(04°59’5’’ North, 75°26’35’’ West), and the last sampling station 
was in Toldafría stream, Villamaría (4°59’08’’ North, 75°26’43’’ 
West). The six sampling stations stood between 2275 and 2766 
meters of altitude, and had similar physical habitat characteristics, 
such as a wavy topography and the presence of riparian vegetation 
[17,18]. 

Specimen collection
A total of six sampling events were conducted from February 

2014 to February 2015. Larvae collection was carried out with 

a Surber net, with 30.5x30.5x8cm dimensions and a mesh size 
of 250µm, and manual drainers (the samples were taken from 
sediments, rock washes and leaf litter). The specimens were 
preserved in absolute ethanol with their corresponding information 
(date, location, and coordinates). In the laboratory, several 
specimens were conditioned in aquariums with water from the 
sampling stations, under constant oxygenation, and were fed with 
TetraMin® until pupae were obtained for species confirmation.

Additionally, the following physical and hydrobiological 
variables were measured in situ in three of the six sampling events: 
water temperature, pH, conductivity, dissolved oxygen, oxygen 
saturation, average depth, width, and water flow velocity. Also, 
the following chemical variables were evaluated in the laboratory: 
chemical oxygen demand (COD), biological oxygen demand (BOD5), 
total coliforms, fecal coliforms, total suspended solids (TSS), total 
solids (TS), cyanide (CN), boron (B), lead (Pb), mercury (Hg), 
ammoniacal nitrogen (NH3

-N), phosphate (PO4), sulfate (SO4), 
iron (Fe), chloride (Cl-), lipids and oils, nitrates (NO3), nitrites 
(NO2), and aluminum (Al). These variables were analyzed by 
ACUATEST S.A. Comparisons of the physical, hydrobiological, and 
chemical variables between the reference and mining stations were 
performed using the Wilcoxon test (W). 

Morphological and molecular evaluation
The ethanol-preserved organisms were examined and 

identified based on the keys of Prat et al. [1,3], using a Leica M205C 
stereomicroscope equipped with a MC170HD digital camera. Next, 
the head of each specimen, both the larvae and pupae reared in 
the laboratory, were dissected and placed in hot 10% KOH. They 
were then washed, dehydrated, and mounted on microscope slides 
with Euparal® for their subsequent observation, following the light 
microscopy (LM) techniques described by Epler [19], and the head 
capsule and pupal keys of Prat et al. [1,20].

DNA was extracted from the thorax and abdomen of 11 larvae, 
as well as two mature pupae, using the DNeasy Blood and Tissue 
Kit (Qiagen®), according to the manufacturer’s instructions. 
Two mitochondrial genes (mtDNA), cytochrome oxidase I (COI) 
and 16S, were amplified with polymerase chain reactions (PCR) 
that were conducted following Ossa et al. [21]. The PCR products 
were purified with the QIAquick PCR purification kit (Qiagen®), 
according to the manufacturer’s instruction, and were shipped 
for sequencing at Macrogen Inc. Korea. The sequenced fragments 
were evaluated and edited using Geneious Trial v8.14 [22] and 
Sequencher 4.1 (Gene Codes Corporation, Ann Arbor, Michigan, 
USA). In addition, the sequences were search by MegaBlast against 
the public databases and deposited in GenBank and Barcode of Life 
Data Systems (BOLD) (Genbank accessions KY568875-KY568909).

There are no available sequences for species of the Genus 1 
in the public databases; therefore, the analysis of the mtDNA COI 
gene included sequences from eight species of Cricotopus, a genus 
with very similar larvae to Genus 1 [1]. The reason for including 
eight species from different subgenera of Cricotopus was to be able 
to more clearly establish the position of larvae of Genus 1 sp. 2 
within the Cricotopus-Oliveiriella complex, since, similarly to what 
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happened with the genus Oliveiriella, it is suspected that the larvae 
of Genus 1 of Roback are actually a subgenus within Cricotopus. 

Moreover, the species Limnophyes sp. was included as an 
outgroup. For the mtDNA 16S rDNA gene analyses, sequences from 
a species of Cricotopus and the species Cardiocladius sp. were used 
as outgroups. The sequences for each gene were aligned using 
Clustal W [23], included in the program MEGA version 7 [24] and 
the alignments were visually reviewed and edited when necessary.

Intraspecific nucleotide divergences were estimated with the 
program MEGA, using the Kimura 2-Parameter distance model 
(K2P) [25]. Automatic Barcode Gap Discovery (ABGD; Puillandre et 
al. [26] was used to infer the number of putative species, using an 
intraspecific divergence prior ranging from 0.001 to 0.1 and the K2P 
evolutionary model. Species confirmation was carried out through 
a similarity analysis based on Neighbor-Joining (NJ), with the K2P 
model and 1000 bootstrap replications, using the program MEGA.

Larval morphometric analyses and frequency of mentum 
deformities 

In order to find possible variations between specimens of 
the reference and mining stations (lack of any evident mining 
impact and sampling stations with mining impact), 13 structure 
measurements were recorded (mm or mm2 for areas), reported 
by Cranston & Krosch [27] for larvae of the genus Barbadocladius 
(Diptera: Chironomidae) and other genera explored in this study, 
which were: lateral head length (LH), lateral head width (LHW), 
lateral head length from the base (LHB), thorax length (TL), width 
of III thorax segment (WTS), width of IV abdominal segment (WAS), 
total body length (TB), body area (BA), body perimeter (BP), dorsal 
head length (DHL), dorsal head width (DHW), dorsal head area 
(DHAr), and dorsal head perimeter (DHP). The body measurements 
were compared between reference and mining sites, through the 

non-parametric Wilcoxon test (W). Statistical analyses were 
performed using R version 3.1.1 (R Development Core Team 2011).

In addition, several structures were re-assessed using an 
electron scanning microscope (ESM). For this, the heads were 
mounted on stubs and metalized in gold, then; the material was 
analyzed and photo-documented on a FEI QUANTA 250, ESEM 
electron scanning microscope. The head capsule mounts with 
ML, as well as the ESM observations, were analyzed in order to 
evaluate the possible existence of mouth deformities according to 
the descriptions of Warwick [5] and Groenendijk et al. [28]. The 
association between deformity occurrence and the reference or 
mining stations was examined through Fisher’s Exact Test. 

Result
Morphological and molecular evaluation

The morphological evaluation was based on the collection 
of 103 organisms of the morphotype Genus 1 sp. 2 (Table 1), 
corresponding to the IV larval instar (Figure 1A), as well as 
eight pupae reared in the laboratory. The larvae of Genus 1 are 
morphologically characterized by a white colored body in young 
larvae, and darker areas in the thorax in more mature larvae 
(Figure 1A). However, it has been noted that color variations cause 
difficulties for species determination [29]. Fourth instar larvae of 
Genus 1 sp. 2 show equal abdominal setae of length corresponding 
to half of the width of the abdominal segment, and anal tubules 
shorter than the posterior pseudopods (Figure 1B). Head with no 
pattern, very dark solid color with lighter areas close to the lateral 
border in the frontal and medial sections; very dark occipital 
border (Figures 1C-D) and short antennae (Figures 1D-E). Mentum 
with second lateral tooth smaller than the first; first lateral tooth as 
wide as second and narrower in the lower part (Figures 1C-E; 2A).

Figure 1: Genus 1 sp. 2. IV larval instar. (A) Larva in IV instar (LM); (B) Abdominal termination; (C) Head cavity (ventral view); 
(D) Head cavity (dorsal view); (E) Head cavity. Mentum (M), Mandible (MA), Antenna (A). 1F-H. Genus 1 sp. 2; pupae. (F) Mount 
of IV abdominal segment (SA). Middle spines (SA III-VI), with hooklets (SA II-V); (G) Last abdominal segments and anal lobes; (H) 
Respiratory organs (OR) (Light microscopy-LM).
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Table 1: Larvae (IV instar) of Genus 1 sp. 2 with presence or absence of deformities in each sampling station. 

Genus 1 sp. 2

Sampling Station With Deformities without Deformities Total

E1 1 4 5

E4 2 6 8

E2 6 31 37

E3 4 27 31

E5 4 12 16

E6 1 5 6

Total 18 85 103

E1: La Elvira Stream (Reference Area); E2: La Elvira Stream (Mining); E3: La Elvira Stream (Mining), E4: Romerales 
Stream (Reference Area); E5: California Stream (Mining); E6: Toldafría stream (Mining)

Mandible with upper tooth shorter and narrower than the first 
(Figure 1E). In the eight pupae evaluated, terga ornamentation 
showed two rows of anteriorly-oriented spines in the II-V abdominal 
segments (SA) (Figure 1F); anal lobe reduced, with a similar size to 
the genital sacs (Figure 1G). Respiratory organ (OR) rounded at the 
end and often with diverse folds on the surface (Figures 1H) and 
without middle spines in the II tergite, although present in the III-VI 
terga (Figure 1F).

In addition, the molecular alignment analyses of the fragments 
of the mtDNA COI and 16S rDNA genes, respectively, confirmed the 
results obtained by the morphological determination. Based on 
the initial partition and an intraspecific divergence prior between 
0.001 and 0.1 for the COI gene and between 0.0028 and 0.0599 for 
the 16S gene, the ABGD species delimitation method identified that 
the larval and pupal sequences obtained for Genus 1 sp. 2 belong to 
a single species out of the nine species identified with the COI gene 
and the two species identified with the 16S gene (Figure 2). 

Figure 2: Genus 1 sp. 2. Head cavity, arrows indicate teeth deformities in the mentum. (A) Mentum without deformities-ESM; (B, 
E) Total loss of several dental pieces - ESM; (C) Teeth wear-LM; (D) Total loss of several dental pieces-LM (Light microscopy-LM 
and electron scanning microscopy-ESM).

Furthermore, the consensus trees obtained from the two genes, 
based on the Neighbor-Joining method, clearly show that the larval 
and pupal sequences of Genus 1 sp. 2 constitute a well-supported 
monophyletic clade, with a mean intraspecific divergence of 0.95%, 
based on the COI gene (Figure 3), and 0.11% on the 16S gene (Figure 

4). These intraspecific divergence values observed for Genus 1 sp. 
2 are similar to the mean values found for the Cricotopus species 
analyzed; with 0% for C. trifascia and 2.31% for C. bicinctus with 
the COI gene, and 0.20% para Cricotopus (Oliveiriella) with the 16S 
gene.

http://dx.doi.org/10.31031/EAES.2018.04.000589
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The intraspecific divergence values found between the species 
analyzed varied between 4.73% and 19.2% with gene COI; while 

the observed divergence between Genus 1 sp. 2 and Cricotopus 
(Oliveiriella) with gene 16S is 7.49%.

Figure 3: Consensus NJ tree with samples of Genus 1 sp. 2, based on distances of the mtDNA COI gene. Bootstrap values are 
indicated only for nodes with support greater than 70%.

Figure 4: Consensus NJ tree with samples of Genus 1 sp. 2, based on distances of the mtDNA 16S gene. Bootstrap values are 
indicated only for nodes with support greater than 70%.
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Larval morphometric analyses and frequency of mentum 
deformities

Of the 13 structure measurements assessed, significant 
differences were observed only for dorsal head area (DHAr) 
between the specimens found in the reference and mining stations, 
according to the non-parametric Wilcoxon test (W=382,5, p=0,04).

Mentum deformities were observed in 18 of the 103 specimens 
evaluated (Table 1; Figures 2A-D). Partial wear of the teeth was 
evident (Figure 2C), as well as total wear or tooth loss (Figures 
2B; 2D-E). Nevertheless, no significant differences were found 
for deformity occurrence in relation to the reference and mining 

stations (Fisher’s Exact Test, p=0.669). Of the total organisms 
collected in the reference stations, 23.1% showed deformities 
(Table 2), indicating that these sampling stations have some type 
of anthropic impact, as evidenced by the physical, hydrobiological, 
and chemical analyses, where most of the parameters assessed do 
not show differences between the reference and mining stations. 
Additionally, there were differences in organism abundance of 
Genus 1 sp. 2 in relation to the reference and mining stations (Table 
3). The organisms from Genus 1 sp. 2 showed a greater abundance 
in stations with mining (n=90) compared to the reference stations 
(n=13).

Table 2: Physical, hydrobiological, and chemical characteristics of the streams assessed. The values correspond to 
the mean values of the parameters measured in each sampling station (Reference stations E1 and E4. Mining impact 
stations E2, E3, E5 and E6). 

Variables Parameter Measurement Units
Sampling Station

E1 E2 E3 E4 E5 E6

Physical

Water temperature
°C

12.7 13.8 13.8 12.5 13.73 14.4

pH 7.64 7.8 7.89 7.2 7.35 7.25

Conductivity µS 206 291 195 252.7 87.1 376.9

Dissolved oxygen mg/L 7.55 6.03 4.75 4.9 5.11 4.73

Oxygen saturation % 99.2 65.3 65.27 65.4 67.5 67.3

Hydrobiological

Average depth cm 10.7 10 13.8 16.5 19.11 10.9

Width m 2.23 2.43 3.05 6.4 5.01 5.75

Water flow velocity m/s 0.43 0.64 0.5 0.73 0.69 0.55

Chemical

Chemical oxygen demand mg/L 23.3 20.3 106 32.67 91.7 59.7

Biological oxygen demand mg/L 3.21 3.21 10 3.21 6.17 3.21

Total coliforms UFC/100mL 2983 9257 341733 2286 3977 1.00E+05

Fecal coliforms UFC/100mL 540 873 2740 504 1546 636

Total suspended solids mg/L 34.17 306 1384 6.67 242.3 18.1

Total solids mg/L 110.7 395 1497,3 85.3 569 161.3

Cyanide mg/L 0.09 0.093 0.093 0.09 0.09 0.093

Boron mg/L 0.83 0.83 0.83 0.83 0.83 0.83

Lead mg/L 0.05 0.085 0.05 0.02 0.02 0.02

Mercury mg/L 0.33 0.33 0.34 0.33 0.33 0.33

Ammoniacal nitrogen mg/L 0.1 0.21 0.22 0.11 0.35 0.11

Phosphate mg/L 0.7 1.2 3.5 0.3 2.3 0.2

Sulfate mg/L 21 56 103.3 7.67 45.7 19.3

Iron mg/L 0.4 1.34 3.68 0.163 1.87 0.53

Chloride mg/L 2.5 2.9 9.2 3 7.3 2.5

Lipids and oils mg/L 0.5 0.9 0.63 0.5 0.5 0.5

Nitrates mg/L 1 1.1 1.4 1 1 1

Nitrites mg/L 0.07 0.3 0.72 0.07 0.34 0.07

Aluminum mg/L 0.11 0.6 8.02 0.1 2.3 0.15

E1-E3: La Elvira Streams; E4: Romerales Stream; E5: California Stream; E6: Toldafría Stream (Adapted from Ossa et 
al. [24]).
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Table 3: Wilcoxon Test comparing the parameters measured (medians are shown) between reference stations (E1 and 
E4) and mining impact stations (E2, E3, E5, and E6).

Variables Parameter
Sampling Station Wilcoxon Test

Reference Mining W-Value p-Value

Chemical

Biological oxygen demand (BOD5) 3.21 3.21 45 0.22

Chemical oxygen demand (COD) 27.5 48.5 470.323 0.323

Total suspended solids (TSS) 8 230 60* 0.027*

Total solids (TS), 106 500 61* 0.018*

Nitrates (NO3) 1 1 51 0.085

Nitrites (NO2) 0.07 0.155 54 0.051

Sulfate (SO4) 14.5 47.5 63* 0.013*

Iron (Fe) 0.175 1.105 66* 0.003*

Chloride (Cl-) 2.5 2.5 46.50.3 0.265

Phosphate (PO4) 0.35 0.95 48 0.265

Lipids and oils 0.5 0.5 42 0.346

Ammoniacal nitrogen (NH3-N) 0.1 0.1 40 0.734

Cyanide (CN) 0.1 0.1 36 1

Aluminum (Al) 0.095 0.225 55.5 0.071

Mercury (Hg) 0.003 0.003 40.5 0.696

Lead (Pb) 0.01 0.02 44 0.43

Boron (B) 0.8 0.8 36 1

Total coliforms 3370 4450 56 0.067

Fecal coliforms 14.25 1250 52 0.146

Físicas

Oxygen saturation 70.8 63.25 32 0.743

Dissolved oxygen 5.205 4.585 32 0.7428

pH 7.5 7.615 45 0.425

Temperature 12.55 13.6 56.5 0.061

Conductivity 162 163.5 34 0.892

Hydrobiological

Average depth 13.499 13.167 34.5 0.925

Width 3.825 3.4 37.5 0.925

Water flow velocity 0.553 0.576 41 0.682

*Differences

Discussion
The morphological evaluation was based on 103 larvae and 

eight pupae of Genus 1 sp. 2, and all morphological characteristics 
agree with those reported by Prat et al. [1]. Although, some of the 
characteristics previously mentioned appear in many larval forms, 
including the genus Cricotopus, of which several subgenera and 
morphotypes, along with the Genus 1, are included in keys of the 
Cricotopus-Oliveiriella complex. Therefore, it is almost impossible 
to differentiate them at the species level based on a larval instar [30]. 
However, this morphology is associated with very different pupal 
forms, which allowed us to reach a species level determination, 
following the key of Prat et al. [20] and the indications of the original 
description of pupae for Genus 1 sp. 2 in Roback & Coffman [2]. Prat 
et al. [20] report that it is common to find Genus 1 in pupae forms 
in high Andean rivers, where these are very characteristic and very 
different from Cricotopus.

The molecular results confirmed the morphological 
determination, previous studies have reported interspecific 
distances for Diptera similar to those reported here; Shouche 
& Patole [31] observed interspecific distances with gene 16S 
between 1% and 9% in three species of Diptera. Ekrem et al. [32] 
reported interspecific divergences of 16.2% for gene COI in the 
family Chironomidae. However, this reference value for species 
identification is not enough, given that these studies mainly 
comprise specimens from the Holarctic region, and there are still 
few studies that analyze specimens from the Neotropics, including 
members of the subfamily Orthocladiinae.

The comparison of the molecular data of Oliveiriella and 
Genus 1 with other subgenera of Cricotopus confirms the findings 
of Andersen et al. (2013), which are also confirmed by Prat et al. 
[33] in that Oliveiriella is a subgenus of Cricotopus and Genus 1 of 
Roback and Coffman is also a subgenera.
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Nevertheless, the larval measurements have been used to 
differentiate larval instars and sexual dimorphism [34,35] pupal 
and exuviae stages [36], exposure to contaminant agents by 
evaluating size variations in head parts [5,9-14,19,28,37] and 
morphometric variations in adults in different regional gradients 
[38]. In this study, only dorsal head area (DHAr) is informative; 
therefore, more research is necessary in order to determine if the 
differences found in this study are due to genetic variability, stress 
type (essential and/or toxic substances), the structures studied 
or the morphometric data used, or to a combination of all of these 
variables [9,10,14,39,40].

Although no significant differences were found between 
deformity frequency and the sampling stations. The presence of 
deformities in Chironomidae larval instars is considered to result 
from exposure of these organisms to diverse contaminant agents 
[9,39,40]. Due to their tolerance, Chironomidae are considered 
excellent water quality bioindicators, since they have regulation 
mechanisms for metals such as Cu, Ni, Zn, Cd, Pb, Hg, and Mn, and 
for which they employ a homeostatic control for the uptake of 
essential and toxic metals through metallothioneins [11,41-43] 
consequently, allowing them to survive in contaminated conditions 
[44].

A great amount of total and suspended solids were found, with 
a high content of sulfates and metals such as iron (Fe), which are 
characteristic of mining disposals and can have negative effects on 
exposed organisms [45]. Nevertheless, according to Arambourou 
et al. [11], there is missing information regarding the study of the 
origin of these abnormalities. Servia et al. [14] and Arambourou et 
al. [40] mention that, to date, there are no studies that allow for 
discarding the possibility that this type of malformations appear 
spontaneously due to natural developmental defects. Further, it 
cannot be ignored that changes in the mentum can be due to the 
substrate or contamination [39,46].

Considering that genera of the order Diptera are typical of 
disturbed areas [4], Genus 1 sp. 2 can be considered as having 
potential for water quality bioindication, due to its tolerance 
to environmental stress, similar to other species of the family 
Chironomidae [5,9,10,16,40].

Finally, the results obtained allow the molecular determination 
of Genus 1 sp. 2 [2], support the morphological data, and associate 
larvae and pupae, contributing to a better understanding of the 
taxonomical limits in Chironomidae, specifically the subfamily 
Orthocladiinae, where there are many difficulties in the taxonomic 
determination of its species [30,44,47-49]. Moreover, the results 
support the establishment of this species as a water quality 
bioindicator [50-52]. 
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