

Porous Titanium Composite Plates for Electrolyzers - A Contribution to Faster Acceptance of Lower-Cost Electrolyzers

Thorsten Hickmann*

Eisenhuth GmbH & Co. KG, Germany

Mini-Review

The next step is the extrusion process with the die shown in (Figure 2). Here it is important that the temperature control is very homogeneous. This should also be investigated in advance. After the extrusion process, the melt has to be cooled down and, if necessary, smoothed [4]. Continuous production of the plates is possible. The decisive factor is that the parameters can be set in such a way that porous plates can also be produced, which can then be used as Porous Transport Layers (PTL). It is important that an exact quantification of the permeation takes place accordingly, therefore the measuring method is explained in more detail, see also (Figure 2). The plates are inserted between 2 glass plates in a U-shaped seal made of silicone and are subjected to vacuum from one side. The other side is connected to the atmosphere. After reaching the specified negative pressure, the vacuum side is hermetically sealed. The subsequent change in pressure within a fixed time window is a measure of the permeation through the test specimen. The measurements were carried out with the

ISSN: 2688-836X

*Corresponding author: Thorsten Hickmann, Eisenhuth GmbH & Co. KG, Friedrich-Ebert-Straße 203, D-37520 Osterode am Harz, Germany

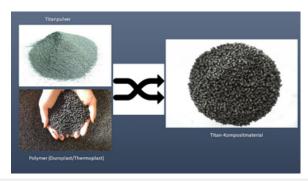
Submission: September 20, 2021

Published:

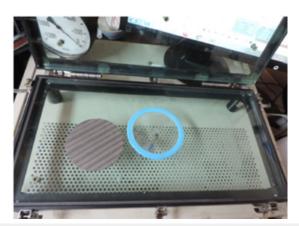
☐ October 08, 2021

Volume 9 - Issue 3

How to cite this article: Thorsten Hickmann. Porous Titanium Composite Plates for Electrolyzers - A Contribution to Faster Acceptance of Lower-Cost Electrolyzers. Nov Res Sci. 9(3). NRS. 000715. 2021.


DOI: 10.31031/NRS.2021.09.000715

Copyright@ Thorsten Hickmann, This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use and redistribution provided that the original author and source are credited.


Novel Research in Sciences 1

NRS.000715. 9(3).2021

permeation measuring and testing system developed by Eisenhuth. The procedure is as follows: First, the referencing is carried out. For referencing, a geometrically identical dense acrylic disc with the same seal is used.

Figure 1: Mixture of polymers and titanium powder to titanium composite material.

Figure 2: U-shaped ring seal together with a test specimen on the measuring device.

Calibration: The calibration refers to the determination of the dead space, i.e., the volume that results from the measuring hoses between the sample, pump, valves up to the transmitter (pressure ¬measurement). The dead space was determined with 15ml.

Calculation: The following algorithm is used to calculate the permeation:

Qv=3600*Delta p*Vtot/(Delta t*pu)

Here the values are:

Qv ml/h Permeation

delta p mbar Pressure change during the measuring

time

Vtot ml dead volume=measuring volume

pu mbar Ambient pressure

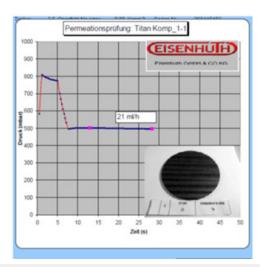
The test procedure in the test device developed by Eisenhuth is as follows:

Phase 1: After inserting the test specimen into the seal and after closing the test device, the vacuum pump is switched on and switched off at approx. 800mbar negative pressure.

Phase 2: Then the system check takes place for approx. 4s together with the test object, without throttle distance to the outside.

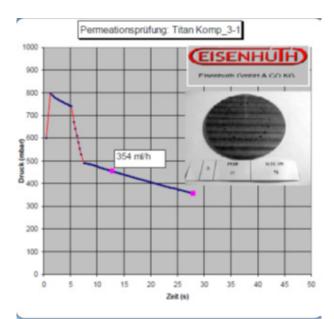
Phase 3: Throttle path to the outside with test specimen.

Phase 4: Hermetic sealing of the measuring device.


Phase 5: Relaxation time for seal, test item is active.

Phase 6: Start of measurement=>start pressure, time window starts

Phase 7: Measuring time.


Phase 8: End of measurement.

The permeation quantity is calculated per time period. The test specimen in the seal lies tightly on the glass plate. A laterally airpermeable felt plate is located on the test specimen. An upper plate, acting as a plane weight force, presses the felt plate onto the test specimen. Thus 2 test areas are created: On the one hand, there is a measuring field under the test specimen as vacuum and measuring space, on the other hand, there is the space with ambient pressure above the test specimen. Permeation through the test specimen therefore takes place from top to bottom. The pressure ¬measured over time in the vacuum chamber is reflected in the permeation flow. The ¬dead space is of decisive importance here. The smaller the dead space, the steeper the pressure curve and vice versa. From the (Figure 3) it can be seen that the pressure is maintained at about 500mbar after the start of the test procedure (after 10 seconds). Constant pressure means: plate is tight. In the following, it is shown for a permeable plate which can be used as a Porous Transport Layer. (Figure 4) shows that the pressure is not maintained after starting the test procedure (after 10 seconds). Falling pressure means: plate is slightly permeable. (Figure 5) shows that the pressure is not maintained after starting the test procedure (after 10 seconds). A strongly decreasing pressure can be observed. This means that the plate is highly permeable and suitable as a porous transport layer.

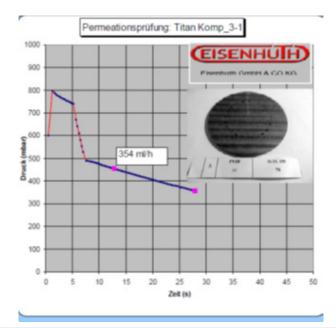


Figure 3: Titanium composite plate: The curve from approx. 10 seconds is horizontal.

NRS.000715. 9(3).2021 3

Figure 4: Titanium composite plate: The curve from approx. 10 seconds onwards drops very slightly.

Figure 5: Titanium composite plate: The curve from approx. 10 seconds onwards drops very slightly.

Acknowledgement and Funding

The works were created in the project "Autark Elyss BB". The project is funded by the state of Brandenburg via the ILB under the funding code 80257166, for which Eisenhuth, located in Wildau, would like to express its sincere thanks. The project is co-financed by the European Regional Development Fund (ERDF).

References

- (2019) Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee and The Committee of the Regions: The European Green Deal, Brussels.
- 2. Höh M (2017) Porous transport layers for polymer electrolyte membrane water electrolysis. PhD Thesis, 388: 1-203.
- Hickmann T (2008) Plastic applications in PEM fuel cells. VDI Reports, pp. 81-83.
- 4. Bonnet M (2013) Plastics technology. Hamburg: Springer Verlag, USA.

For possible submissions Click below:

Submit Article